Collaborative Filtering Recommendation using Matrix Factorization: A MapReduce Implementation

نویسندگان

  • Xianfeng Yang
  • Pengfei Liu
چکیده

Matrix Factorization based Collaborative Filtering (MFCF) has been an efficient method for recommendation. However, recent years have witness the explosive increasing of big data, which contributes to the huge size of users and items in recommender systems. To deal with the efficiency of MFCF recommendation in the context of big data challenge, we propose to leverage MapReduce programming model to re-implement MFCF algorithm. Specifically, we develop a four-step process of MFCF, each of which is implemented as MapReduce tasks. The experiments are conducted on a Hadoop cluster using a real world dataset of Netflix. The empirical results confirm the efficiency of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

Content-boosted Matrix Factorization Techniques for Recommender Systems

Many businesses are using recommender systems for marketing outreach. Recommendation algorithms can be either based on content or driven by collaborative filtering. We study different ways to incorporate content information directly into the matrix factorization approach of collaborative filtering. These content-boosted matrix factorization algorithms not only improve recommendation accuracy, b...

متن کامل

Session Aware Music Recommendation System with Matrix Factorization technique-SVD

Recommender systems (RS) serve as valuable information filtering tools for web online users to deal with huge amount of information available on the Internet. RS can be used in making decision in various fields like which books to purchase or which music to listen and so on. In this paper we have proposed and implemented an algorithm based on the Collaborative filtering method and Matrix Factor...

متن کامل

Implementation of Collaborative Filtering Approach in Preference Aware Service Recommendation

Service recommendations are shown as remarkable tools for providing recommendations to users in an appropriate way. In the last few years, the number of customers, online information and services has grown very rapidly, resulting in the big data analysis problem for service recommendation system. Consequently, there is scalability and inefficiency problems associated with the traditional servic...

متن کامل

Recommendation System Using Bloom Filter in Mapreduce

Many clients like to use the Web to discover product details in the form of online reviews. The reviews are provided by other clients and specialists. Recommender systems provide an important response to the information overload problem as it presents users more practical and personalized information facilities. Collaborative filtering methods are vital component in recommender systems as they ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014